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We investigate the electronic transport properties of a bilayer graphene flake contacted by two monolayer
nanoribbons. Such a finite-size bilayer flake can be built by overlapping two semi-infinite ribbons or by
depositing a monolayer flake onto an infinite nanoribbon. These two structures have a complementary behavior
that we study and analyze by means of a tight-binding method and a continuum Dirac model. We have found
that for certain energy ranges and geometries, the conductance of these systems oscillates markedly between
zero and the maximum value of the conductance, allowing for the design of electromechanical switches. Our
understanding of the electronic transmission through bilayer flakes may provide a way to measure the inter-
layer hopping in bilayer graphene.
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I. INTRODUCTION

Graphene is a sheet of carbon atoms that order in a hon-
eycomb structure, which is composed of two inequivalent
triangular sublattices A and B. Since its experimental isola-
tion in 2004 �Ref. 1� and the subsequent verification of its
exotic properties, the interest in this material has boosted.
Carriers in monolayer graphene behave as two-dimensional
�2D� massless Dirac fermions,2 with a linear dispersion rela-
tion ��k�= �vFkv. Phenomena of fundamental nature, such
as quantum Hall effect3,4 and Klein5,6 tunneling have been
recently measured in graphene based devices.

Being a material of atomic thickness, graphene is re-
garded as a promising candidate for nanoelectronic
applications.2 By patterning graphene, its electronic structure
can be altered in a dramatic fashion: size quantization yields
ribbons with electronic gaps, essential for electronics.7–9 By
imposing appropriate boundary conditions, the physics of
graphene nanoribbons is well described within a continuum
Dirac model.10–12 Furthermore, connections and devices can
be designed in a planar geometry by cutting graphene
layers.13 Another way to modify the band structure of
graphene is to stack two graphene monolayers, 1 and 2,
forming a bilayer graphene.14–16 In bilayer graphene there
are four atoms per unit cell, with inequivalent sites A1, B1
and A2, B2 in the first and second graphene layers, respec-
tively.

Different stacking orders can occur in bilayer graphene.
Due to its larger stability for bulk graphite, the most com-
monly studied is AB �Bernal� stacking. In the AB stacking,
the two graphene layers are arranged in such a way that the
A1 sublattice is exactly on top of the sublattice B2. In the
simple hexagonal or AA stacking, both sublattices of sheet 1,
A1 and B1, are located directly on top of the two sublattices
A2 and B2 of sheet 2. Although graphite with direct or AA
stacking has not been observed in natural graphite, it has
been produced by folding graphite layers at the edges of a
cleaved sample with a scanning tunneling microscope tip;17

additionally, the growth of AA-stacked graphite on �111� dia-
mond has also been reported.18 Furthermore, it has been re-

cently found that AA stacking is surprisingly frequent in bi-
layer graphene,19 so it should be also considered as a realistic
possibility in few-layer graphene. The interplanar spacing for
the AB stacking has been experimentally determined to be
cAB=3.35 Å,20 whereas for the AA stacking seems to be
somewhat larger, cAA�3.55 Å.18 First-principles calcula-
tions agree with these values.21–23 In any case, the distance
between atoms belonging to different layers in both stackings
is much larger that the separation between atoms in the same
layer, aCC=1.42 Å.

Nanostructures based on bilayer graphene have begun to
be explored only recently.16,24–28 Bilayer graphene nanorib-
bons might present better signal-to-noise ratio in transport
experiments than monolayer ribbons.29 Graphene flakes are
quantum-dot-like structures, and because of their aspect ratio
they are also called nanobars. Both, bilayer nanoribbons and
bilayer flakes, show interesting properties with an intriguing
dependence on stacking. The dependence of the energy gap
of bilayer graphene flakes on their width and length as well
as on their atomic termination has been recently reported.30

In this paper we concentrate in the transport properties of
bilayer armchair graphene flakes with nanoribbon contacts.
We consider that the most likely way of achieving such
quasi-zero-dimensional structures is either by the overlap of
two nanoribbons, depicted in the lower part of Fig. 1, or the
deposition of a finite-size graphene flake over a graphene
nanoribbon, shown in the upper part of Fig. 1. These two
configurations correspond to two different ways of providing
monolayer nanoribbon leads for the bilayer flake: either the
ribbon leads are contacted to different layers of the flake, or
to the same monolayer. We will address these two configu-
rations as bottom-bottom �1→1� or bottom-top �1→2�, re-
spectively. In both geometries the width of the bilayer flake
and nanoribbons is the same, W, and the length of the bilayer
region is L. In this work we consider narrow armchair me-
tallic graphene nanoribbons in the energy range for which
only one incident electronic channel is active.

We calculate the conductance with two different ap-
proaches: a tight-binding model using the Landauer-Büttiker
formalism and a mode-matching calculation in the con-
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tinuum Dirac-like Hamiltonian approximation. Our main re-
sults are the following:

�i� In the AA stacking configuration, the transmission
through the system shows antiresonances due to the interfer-
ence of the two propagating electronic channels in the bi-
layer flake. For a bilayer region of length L we obtain that
the conductance oscillates as function of energy with a main
period vF� /L. For a fixed incident energy E, the conduc-
tance as a function of the length L oscillates with two main
periods: �vF /�1 and �vF /E, being �1 the interlayer hopping
parameter. The bonding/antibonding character of the bilayer
bands in the AA stacking makes the bottom-top and bottom-
bottom conductances to be rather complementary: the con-
ductance is zero in the bottom-top configuration and it is
finite in the bottom-bottom arrangement at zero energy, and
in general the maxima of the bottom-top configuration coin-
cide with the minima of the bottom-bottom one and vice
versa.

�ii� For the AB stacking, and for energies larger than the
interplane hopping �1, these devices behave similar to those
in the AA configuration because there are also two propagat-
ing electron channels in the bilayer flake at these energies.
The conductance presents antiresonances with periods de-
pending on E, �1, and L. An interesting difference is that for
a fixed incident energy, the period related with interlayer
hopping is twice than that found for the AA stacking. This
reflects that in the AB stacking only half of the atoms are
connected by interlayer hopping, whereas in the AA arrange-
ment all atoms are connected.

�iii� For energies smaller than the interplane hopping, for
which the AB stacking has only a propagating channel, the
conductance shows Fabry-Pérot-like resonances. These are
associated with constructive interferences in the only avail-
able electronic channel. At zero energy the conductance of
the bottom-bottom configuration is unity, whereas in the
bottom-top geometry the conductance is zero.

We have analyzed the dependence of the transmission
with the structural parameters and the interlayer coupling in
bilayer graphene. This study provides a way to determine the
interlayer hopping by studying the variation in the low-

energy conductance of two overlapping nanoribbons with the
bilayer flake length; in addition, it could clarify the role of
stacking in the transport characteristics of these systems. Our
results also indicate that the conductance, as function of en-
ergy and system size, oscillates markedly between zero and a
finite value, allowing for the design of electromechanical
switches based on overlapping nanoribbons.

In this work we restrict ourselves to zero gate voltage.
The application of an external electric field to the bilayer
system introduces a new tuning parameter that could be of
interest for potential applications. However, we find that
even without external gate the transport properties of the
bilayer flakes are so rich that make this system attractive for
applications even at zero gate voltage.

This work is organized as follows. In Sec. II we introduce
the tight-binding and Dirac Hamiltonians we use to model
the electronic properties of graphene. Section III is dedicated
to describe the conductance calculations, both in the tight-
binding approximation, for which we use Landauer-Büttiker
formalism, and in the continuum Dirac-like model, where we
use a wave function matching technique. Section IV is dedi-
cated to present numerical results obtained in the tight-
binding Hamiltonian and compare them with the analytical
results obtained in the Dirac formalism. Finally, we conclude
in Sec. V summarizing our main results.

II. THEORETICAL DESCRIPTION OF THE SYSTEM

The low-energy properties in graphene are mainly deter-
mined by the pz orbitals. Thus, we adopt a �-band tight-
binding Hamiltonian with nearest-neighbor in-plane interac-
tion given by the hopping parameter �0=2.66 eV. In
undoped graphene, the conduction and valence bands touch
at two inequivalent points of the Brillouin zone K and K�.
Near these points, the electric properties of graphene can be
described by a massless Dirac Hamiltonian2 that has a linear
dispersion with slope vF=

�3
2 �0a0, where a0=2.46 Å is the

graphene in-plane lattice parameter.
Bilayer graphene consists of two graphene layer coupled

by tunneling. The interlayer coupling is modeled with a
single hopping �1 connecting atoms directly on top of each
other, which we take as �1=0.1�0, in agreement with experi-
mental results.31,32 As discussed in the Introduction, the in-
terlayer hopping is considerably smaller than the intralayer
hopping because the nearest-neighbor distance between car-
bon atoms is much smaller than the interlayer separation. A
more realistic description of the bilayer band structure re-
quires the inclusion of more hopping terms in the Hamil-
tonian that produces warping effects in the bands. However
we are interested in the properties of the system near the
neutrality point, where the Dirac cones are practically undis-
torted and therefore the continuum approximation is reliable.

A. Tight-binding Hamiltonians

The tight-binding Hamiltonian for the AB-stacked bilayer
reads

L

z

y

x

W

FIG. 1. �Color online� Schematic view of two possible geom-
etries for a bilayer graphene flake contacted by two nanoribbons.
Top: a finite-size bilayer graphene flake achieved by overlaying a
monolayer graphene quantum dot over an infinite graphene nanor-
ibbon �1→1 configuration�. Bottom: the bilayer graphene flake is
formed by the overlap of two semi-infinite nanoribbons �1→2 con-
figuration�. In both cases the width and length of the bilayer region
are L and W, respectively.
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HAB = − �0 �
�i,j�,m

�am,i
+ bm,j + h . c .� − �1�

i

�a1,i
+ b2,i + H . c .� ,

�1�

where am,i�bm,i� annihilates an electron on sublattice A�B�, in
plane m=1,2, at lattice site i. The subscript �i , j� represents a
pair of in-plane nearest neighbors. For the AB stacking we
assume that the atoms on the A sublattice of the bottom layer
�A1� are connected to those on the B sublattice of the top
layer �B2�. The second term in Eq. �1� represents the hop-
ping between these two sets of atoms.

For the bilayer with AA stacking, all the atoms of layer 1
are on top of the equivalent atoms of layer 2; thus, the
Hamiltonian takes the form

HAA = − �0 �
�i,j�,m

�am,i
+ bm,j + h . c .�

− �1�
i

�a1,i
+ a2,i + b1,i

+ b2,i + H . c .� . �2�

As we are interested in the transport properties of the bilayer
flakes, we will concentrate on structures where the leads are
monolayer armchair graphene nanoribbons �aGNR�, with
widths chosen to have metallic character. We denote the rib-
bon width with an integer N indicating the number of carbon
dimers along it. With this convention, a nanoribbon of width
N=3p+2, where p=0,1 ,2. . ., is metallic. In Fig. 2�a� we
plot the atomic geometry of the monolayer aGNR leads and
the corresponding low-energy electronic bands, as obtained
from the tight-binding Hamiltonian. Note that in aGNR the
two Dirac points collapse in just one.10 Near the Dirac point
the dispersion is linear, vFk. In the transport calculations we
will only consider incident electrons inside this subband, i.e.,
with energy lower than the second subband. An aGNR is
metallic because of a particular combination of the wave
functions coming form the two original Dirac points. This
combination is preserved when piling up two metallic arm-
chair monolayer ribbons, being the corresponding bilayer na-
noribbon also metallic.

The details of the low-energy spectrum of bilayer nanor-
ibbons depend on the particular stacking. In Fig. 2�b� we plot
the tight-binding band structure of a bilayer nanoribbon with

AA stacking. The bands also present a linear dispersion and
they can be understood as bonding/antibonding combinations
of the constituent monolayer aGNR bands.

The AB stacking can be achieved from the AA bilayer
geometry by displacing one graphene monolayer with re-
spect to the other, in such a way that the atoms of one sub-
lattice �i.e., A� of the top monolayer are placed over the
atoms of the other sublattice �B� of the bottom monolayer. In
nanoribbons, two different AB stackings are possible:33 the
AB-� stacking, shown in Fig. 2�c�, which yields a more sym-
metric geometry for infinite armchair nanoribbons, and the
AB-� stacking, shown in Fig. 2�d�. Notice that, for armchair
nanoribbons, the AB-� configuration can be reached by dis-
placing the top monolayer in the direct stacking a distance
equal to the carbon-carbon bond aCC along the ribbon length,
as can be seen by comparing Figs. 2�b� and 2�c�. For the
AB-� stacking, the displacement is of the same magnitude
but at 60° with the ribbon longitudinal direction, yielding a
less symmetric configuration for armchair nanoribbons �Fig.
2�d�	. In both cases the AB-stacked bilayer graphene nanor-
ibbons have metallic character, and the conduction and va-
lence bands have a parabolic dispersion at the Dirac point.

B. Dirac-like Hamiltonians

Most of the low-energy properties of monolayer and bi-
layer graphene nanoribbons can be understood using a k ·p
approximation, which yields a Dirac-like Hamiltonian.10,11,25

The low-energy effective bilayer Hamiltonian describing the
properties of a infinite AA-stacked bilayer has the form

HAA =

0 vF�† �1 0

vF� 0 0 �1

�1 0 0 vF�†

0 �1 vF� 0
� , �3�

where �=kx+ iky =kei�k, �k=tan−1�kx /ky�, and k= �kx ,ky� is
the momentum relative to the Dirac point. The Hamiltonian
acts on a four-component spinor ��A

�1� ,�B
�1� ,�A

�2� ,�B
�2��. The

eigenfunctions of this Hamiltonian are bonding and anti-
bonding combinations of the isolated graphene sheet solu-
tions,

�s,�
AA = svFk � �1, 	s,�

AA =

1

sei�k

�1

�sei�k
�eik·r, �4�

with s= �1.
The low-energy Hamiltonian of the AB stacking reads14

HAB =

0 vF�† 0 �1

vF� 0 0 0

0 0 0 vF�†

�1 0 vF� 0
� , �5�

with eigenvalues

FIG. 2. �Color online� Atomic structure geometries and band
dispersion relations around the Dirac point for several armchair-
terminated nanoribbons. The ribbon longitudinal axes are in the
horizontal direction. �a� Monolayer armchair nanoribbon; �b� bi-
layer nanoribbon with AA stacking; �c� bilayer ribbon with AB-�
stacking; �d� bilayer nanoribbon with AB-� stacking. For this en-
ergy range, the dispersion relations �a�–�c� are independent of the
ribbon width; case �d� corresponds to N=17.
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�s,�
AB =

s

2
��1 � �4vF

2k2 + �1
2�, s = � 1. �6�

For a given eigenvalue E, the wave function takes the form

	s,�
AB =


E

vFkei�

−
vFke−i�

�1E
�vF

2k2 − E2�

−
vF

2k2 − E2

�1

�eik·r. �7�

In accordance with the geometry shown in Fig. 1, we assume
for nanoribbons that the system is invariant in the x direction,
and therefore kx is a good quantum number. In the case of
metallic aGNR, the boundary conditions are satisfied10 for
ky =0 independently of the nanoribbon width; this ky =0 state
is the lowest energy band confined in the aGNR. We have
checked that the dispersion of the lowest energy band ob-
tained by solving the Dirac model coincides with that ob-
tained by diagonalizing the tight-binding Hamiltonian for the
monolayer, bilayer AA and AB-� nanoribbons. Therefore, the
Dirac approximation is a good description for the low-energy
properties of these nanoribbons, Figs. 2�a�–2�c�. This is not
the situation for bilayer graphene nanoribbons with AB-�
stacking. In this case, the atomic asymmetry at the edges of
the ribbon is not captured by the Dirac model, which is a
long-wavelength approximation. Therefore, we should de-
scribe the electronic properties of nanoribbons with AB-�
stacking using the tight-binding Hamiltonian.

III. CONDUCTANCE

A. Tight-binding approach: Landauer-Büttiker formalism

Due to the lack of translational invariance of the system,
in the tight binding model we calculate the electronic and
transport properties using the surface Green’s function
matching method.34,35 To this end, the system is partitioned
in three blocks: two leads, which we assume to be semi-
infinite aGNR, and the conductor, consisting of the bilayer
flake. The Hamiltonian is

H = HC + HR + HL + VLC + VRC, �8�

where HC, HL, and HR are the Hamiltonians of the central
portion, left and right leads, respectively, and VLC, VRC are
the coupling matrix elements from the left L and right R lead
to the central region C. The Green’s function of the conduc-
tor is

GC�E� = �E − HC − 
L − 
R�−1, �9�

where 
�=V�Cg�V�C
† is the self-energy due to lead �=L ,R,

and g�= �E−H��−1 is the Green function of the semi-infinite
lead �.36

In the linear response regime, the conductance can be
calculated within the Landauer formalism as a function of
the energy E. In terms of the Green’s function of the
system,34,35,37 it reads

G =
2e2

h
T�E� =

2e2

h
Tr��LGC�RGC

† 	 , �10�

where T�E�, is the transmission function across the conduc-
tor, and ��= i�
�−
�

†	 is the coupling between the conductor
and the �=L ,R lead.

B. Continuous approximation: wave function matching

In the low-energy limit, we can obtain the conductance of
the system by matching the eigenfunctions of the Dirac-like
Hamiltonians. As commented above, we consider incident
electrons from the lowest energy subband, which correspond
to a transversal momentum ky =0 in aGNRs. Assuming an
electron with energy E coming from the left monolayer rib-
bon, we compute the transmission coefficient t to the right
monolayer lead. In the central part the wave functions are
linear combinations of the solutions of the bilayer nanorib-
bon Hamiltonians given in Sec. II B at the incoming energy
E. The transmission, reflection, and the coefficients of the
wave functions in the bilayer part are determined by impos-
ing the appropriate boundary conditions at the beginning
�x=0� and at the end �x=L� of the bilayer region. Matching
of the wave functions amounts to require their continuity. As
the Hamiltonian is a first-order differential equation, current
conservation is ensured automatically. The precise boundary
condition depends both on the lead configuration �1→1 or
1→2� and on the stacking.

FIG. 3. �Color online� Conductance as a function of the bilayer
region length L for a ribbon of width N=17 with AA and AB-�
stackings, at a Fermi energy E=�1 /2. The top panel shows the
1→2 configuration and the lower panels are for the 1→1 configu-
ration, as schematically indicated in the upper left corners of the
panels. The plots are labeled with the stackings �AA and AB-��. Red
circles: tight-binding results. Black solid lines: continuum model
calculations.
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1. AA stacking

In this stacking, each atom A1�B1� has an atom A2�B2�
on top of it. The dispersion in the central part is given by Eq.
�4�, and for each incident carrier with momentum kx, there
are always two reflected and two transmitted eigenfunctions
with momenta ��kx��1 /vF�; see Fig. 2�b�.

In the 1→1 �bottom-bottom� configuration the wave
function should be continuous in the bottom layer, i.e.,
�A

�1��x� continuous at x=0 and �B
�1��x� continuous at x=L; for

the top layer

�A
�2��x = 0� = �B

�2��x = L� = 0. �11�

From these boundary conditions we obtain the transmission

TAA
1→1 = 1 −

sin4�1L

vF

1 + 2 cos
2EL

vF
cos2�1L

vF
+ cos4�1L

vF

. �12�

In the 1→2 configuration the bottom wave function �A
�1��x�

and the top wave function �B
�2��x� should be continuous at

x=0 and x=L, respectively. In addition, the hard-wall condi-
tion should be satisfied,

�A
�2��x = 0� = �B

�1��x = L� = 0. �13�

The above boundary conditions yield the transmission

TAA
1→2 = 1 −

cos4�1L

vF

2�1 − cos
2EL

vF
sin2�1L

vF
+ cos4�1L

vF

. �14�

We see from these equations that the conductance changes
periodically as function of the incident energy and length of
the bilayer flake. For fixed L, the transmission is a periodic
function of the incident energy. In the bottom-bottom geom-
etry there are antiresonances, TAA

1→1=0, at energies given by
�vF

L �n+ 1
2 �, with n=0,1 ,2. . .. These energies corresponds to

quasilocalized states in the top part of the bilayer flake.38 The
paths through the bottom graphene ribbon and through the
quasilocalized state of the top flake interfere destructively,
producing the antiresonance.39–42 In the bottom-top configu-
ration, the momenta of the quasilocalized states of the bi-
layer flake are shifted in − �

2L , so the antiresonances occur at
energies

�vF

L n, with n=0,1 ,2. . ..
For fixed energy, the conductance varies periodically with

the length of the bilayer flake. There is a period, �vF /E,
related to the energy of the incident carrier; other periods are
harmonics of that imposed by the interlayer hopping,
�vF /�1. The dependence of the conductivity on �1 can be
understood by resorting to a simple nonchiral model with
linear dispersion. Consider an incident carrier from the left
with momentum kx and energy E=vFkx in the bottom sheet.

FIG. 4. �Color online� Conductance as a function of the bilayer
region length L for a ribbon of width N=17 with direct and
Bernal-� stackings, at a Fermi energy E=2�1. The top panel shows
the 1→2 configuration and the lower panels are for the 1→1 con-
figuration, as schematically indicated in the upper left corners of the
panels. The plots are labeled with the stackings �AA and AB-��. Red
circles: tight-binding results. Black solid lines: continuum model
calculations.

FIG. 5. �Color online� Conductance as a function of Fermi en-
ergy for a bilayer region of length L=10 u.c. �top panel� and L
=20 u.c. �bottom panel�. Dirac-like results: solid black lines corre-
spond to the 1→2 configuration and the dashed red lines for the
1→1 configuration. Inside each panel, the top graph depicts the AA
stacking, and the bottom graph shows the AB-� stacking data, as
labeled therein. The tight-binding calculations are shown in colored
circles.
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When arriving at the bilayer central region, the incident
wave function decomposes into a combination of bonding
�b� and antibonding �a� states of the bilayer with momentum
kb�a�=kx��1 /vF. The conductance through the bilayer re-
gion is proportional to the probability of finding an electron
at the top �bottom� end of the central region, 1�cos�kb

−ka�L=1�cos �1L /vF, depending of whether the system is
in the 1→2 or in the 1→1 configuration. This simple model
explains the dependence of the conductivity on harmonics of
cos �1L /vF and also why the 1→2 and the 1→1 transmis-
sions are in counterphase. The phase opposition is more evi-
dent in the E→0 limit of Eqs. �12� and �14�, which give an
E=0 conductance in the bottom-top configuration equal to
zero, whereas in the bottom-bottom configuration it has a
maximum finite value that depends on the flake size,

TAA
1→1�E = 0� = 1 −

4 sin4 �1

vF

3 + cos22�1L

vF

, �15�

TAA
1→2�E = 0� = 0. �16�

2. AB stacking

In this stacking only the atoms A of layer 1 and the atoms
B of layer 2 are directly connected by tunneling. The disper-
sion in the central part is given by Eq. �6�. For an incident

carrier with �E���1 and momentum kx there are always two
reflected and two transmitted eigenfunctions with momen-
tum �k1�2�= ��kx�kx��1 /vF� in the bilayer region, see Fig.
2�c�. However, for incident wave functions with �E��1,
there are only one reflected and one transmitted central wave
functions with momenta �k1= ��kx�kx+�1 /vF�. In addition,
there are an evanescent and a growing state with decay con-
stants �= ��kx��1 /vF−kx�. Therefore, the conductance of
the system depends on whether the energy of the carrier is
larger or smaller than the interlayer hopping. For �E���1,
there are two channels in the central region and the interfer-
ence between these channels produces antiresonances,
whereas for �E��1 only an electronic channel is present in
the central region, and Fabry-Pérot interference can occur.
Analytical, but very large and impractical expressions can be
obtained for the conductance in the AB stacking. Therefore,
we choose to present the expressions for the transmission in
the low and high energy limit. In the next section, when
comparing with the tight-binding results, we plot the exact
results obtained from wave function matching in the con-
tinuum approximation.

The boundary conditions for AB stacking in the bottom-
bottom configuration are similar to those of the AA case:
�A

�1��x� and �B
�1��x� should be continuous at x=0 and x=L,

respectively, and

�A
�2��x = 0� = �B

�2��x = L� = 0. �17�

In the low-energy limit, E��1, the AB stacking conductance
in the bottom-bottom configuration takes the form

TAB
1→1�E � �1� = 1 −

1

1 +
4E

�1

�cos k1L + cosh �L�2

�cosh �L sin k1L − cos k1L sinh �L�2

, �18�

which presents resonances when tan k1L=tanh �L; for large L this occurs when L= �n+ 1
4 � �

k1
, being n an integer. For E→0 the

system has transmission unity.
In the limit of large energy, E��1 and in the bottom-bottom configuration the transmission is

TAB
1→1�E � �1� = 1 −

8 sin4� k1 − k2

2
L

11 + 4 cos 2k1L + 4 cos�k1 − k2�L + cos 2�k1 − k2�L + 4 cos 2k2L + 8 cos�k1 + k2�L
. �19�

This transmission presents antiresonances associated with destructive interferences of the two electronic paths in the bilayer
region. The behavior of the conductance is similar to that of the AA stacking, Eq. �12�. There are periodicities associated with
the energy of the incident electron: for E��1, 2k1L�2k2L��k1+k2�L�2EL /vF; and there are also periodicities associated
with the interlayer hopping. The lower harmonic in the AB stacking,

k1−k2

2 L�
�1L

2vF
, is half the basic harmonic in the AA stacking,

and this reflects the fact that in the AB stacking only half of the atoms have direct interlayer tunneling.
In the bottom-top geometry �A

�2��x� and �B
�1��x� should be continuous at x=0 and x=L, respectively, and

�B
�2��x = 0� = �A

�1��x = L� = 0. �20�

In the AB stacking, interlayer tunneling connects A1 atoms with B2 atoms; this arrangement determines the form of Eq. �20�.
For E��1 the bottom-top transmission can be approximated as
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TAB
1→2�E � �1� = 1 −

�1 + cos k1L cosh �L +
E

�1
sin k1L sinh �L2

4
E

�1
�cosh �L sin k1L + cos k1L sinh �L�2 + �1 + cos k1L cosh �L − 3

E

�1
sin k1L sinh �L2 . �21�

It can be seen that the 1→2 conductance goes to zero when For E→0, TAB
1→2 tends to zero, and it is complementary to TAB

1→1.
For large L, TAB

1→2 presents resonances at L= �n+ 1
2 � �

k1
, with n integer. For energies larger than the interlayer hopping the

conductance can be approximated as

TAB
1→2�E � �1� = 1 −

8 cos4� k1 − k2

2
L

11 − 4 cos 2k1L − 4 cos�k1 − k2�L + cos 2�k1 − k2�L − 4 cos 2k2L + 8 cos�k1 + k2�L
. �22�

In this energy limit, the interference between different elec-
tron paths through the systems produces antiresonances.
Similarly to the bottom-bottom configuration, for a fixed en-
ergy E��1 the transmission varies periodically with L, with
one period given by the incident energy, �vF /E, and others
related to the interlayer hopping, ��vF /�1.

IV. RESULTS

As the systems possess electron-hole symmetry, we con-
centrate on energies E�0. Let us recall here that the length
of a unit cell �u.c.� for an armchair ribbon is 3aCC=�3a0. In
the following Figures, we choose to give the system length L
in terms of the armchair ribbon u.c. length, which is unam-
biguous for the discrete tight-binding model. Note that, in the
continuum approximation, the hard-wall conditions at the
edges of the system �x=0 and x=L� are set at two extra rows
of atoms where the wave functions are imposed to be zero.
This amounts to add to the system length the quantity aCC,
which we take into account when comparing the continuum
and the tight-binding results.

A. AA and AB-� stackings

As discussed in the previous section, the expressions for
the transmission �Eqs. �12�, �14�, �18�, �21�, �19�, and �22�	
demonstrate that the dependence with the system length has
periodicities related to the interlayer coupling �1. This is
evident in Fig. 3, which shows the length dependence of the
conductance at a fixed energy E=�1 /2, for the stackings AA
and AB-� and the two lead configurations, 1→2 and 1→1.
Here we depict the tight-binding results with circles and the
continuum ones with full lines. The tight-binding calcula-
tions are performed for a ribbon of width N=17, but for this
energy range only one channel contributes to the conduc-
tance in the monolayer and at most two channels in the bi-
layer flake, so the conductance is independent of N. The
agreement between the two models is excellent for these
stackings and energy range. As expected, the AA stacking
shows clear antiresonances as a function of length, and the
results for the 1→2 and 1→1 configurations are exactly in
counterphase.

The results for the two configurations �1→1 and 1→2�
with AB-� stacking have an approximate complementarity;
only at L→0 there is zero transmission for the 1→2 case
corresponding to a transmission maximum for the 1→1 sys-
tem. The subsequent maxima and minima are slightly
shifted, and more importantly, there are no zero antireso-
nances for finite length. As mentioned before, there is only
one transmission channel in the bilayer, so although the con-
ductance oscillates due to finite-size effects, there are not
antiresonances for the AB-� at this energy.

Figure 4 shows the length dependence of the conductance
for another energy E=2�1, where there are two conducting
channels for both stackings. It is apparent the change for the
AB-� case, which now presents antiresonances with zero
conductance. As to the AA stacking, the conductance for the
1→2 configuration shows only one clear period of 16 u.c.,
whereas the 1→1 case shows also a 8 u.c. periodicity, stem-
ming from the cos 2EL /vF term in the conductance. The
analytical expressions Eqs. �12� and �14� allows us to verify
that, for the 1→2 case, this energy-dependent term
cos 4�1L /vF combines with the other �1-dependent terms to
yield a single period, whereas for the 1→1 case, the
cos 4�1L /vF survives.

Figure 5 shows the conductance G�E� as a function of
energy for the two geometries considered and the most sym-
metric stackings, namely, the AA and the AB-�, for a flake
length of L=10 u.c. �top panel� and L=20 u.c. �bottom
panel�. The tight-binding results are depicted with circles and
the continuum ones with lines.

As discussed before, the most characteristic feature of the
transmission is the appearance of Fano antiresonances with
zero conductance. This can happen for any energy in the case
of AA stacking because there are always two conducting
channels in the AA bilayer. On the contrary, for AB-� stack-
ing, with only one channel for E�1, the oscillations in the
conductance are due to a Fabry-Pérot-like effect, i.e., the
interference of one scattering channel with itself due to the
finite size of the structure. This is most clearly seen for the
L=20 case, where the AB-� stacking presents a nonzero
minimum in the conductance in the �0,�1� energy range,
whereas the antiresonances above �1 clearly reach zero val-
ues.

Notice as well the agreement with the continuum calcula-
tions when E→0. All the 1→2 configurations have zero
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conductance in this limit. As to the 1→1 configuration,
G�E=0� has a in general nonzero value, which oscillates as a
function of the system length, as described by Eq. �15� and it
is seen in Fig. 5. The 1→1 and 1→2 results for the AA
stacking do show a certain complementarity: the conduc-
tance minima in one configuration coincide with the maxima
of the other one. Furthermore, the periodicity of the conduc-
tance as a function of energy for the AA stacking due to the
term cos 2EL /vF is evident in Fig. 5, and agrees perfectly
with the value given by the Dirac continuum approximation,
namely, 0.16�0 for L=10 and 0.079�0 for L=20.

The continuum model allows us to make a more complete
characterization of the behavior of these systems. Figure 6
shows contour plots of the transmission versus energy and
bilayer flake length for the direct stacking and the two con-
figurations, 1→1 and 1→2, given by Eqs. �12� and �14�. We
clearly see the main transmission antiresonances with a 16
u.c. period, stemming from the interlayer hopping term
�vF /�1, as discussed in Sec. III B 1. In fact, it turns out that
for certain flake sizes L, the conductance is zero, indepen-
dently of the energy. As this spatial period depends directly
on the interlayer coupling strength �1, we propose that this
feature can be used to measure the interlayer hopping param-
eter, the value of which is still under debate:43 by overlap-
ping two nanoribbons and displacing one of them with re-
spect to the other, the spatial period could be measured and
thus �1 would be obtained.

As the variation in the conductance as a function of length
is so dramatic, from one quantum of conductance to zero,
this system can function as an electromechanical switch,
turning from the maximum conductance to zero by a dis-
placement of a few Å. The contour plots for the AA case also
reveal the counterphase behavior of the 1→1 and 1→2 con-
figuration discussed previously. It is patent how the maxima
of the conductance vs. L for the 1→2 system coincide with
the 1→1 minima and vice versa.

Figure 7 displays the contour plots for the AB-� case
obtained within the Dirac model. There are two important
differences with respect to the AA stacking. First, now there
are two distinct energy regions, set by the interlayer coupling
�1. Below E=�1, there are no antiresonances because there is
only one propagating channel at the bilayer. There are con-
ductance oscillations, but not so marked as for E��1, where
the zero antiresonances appear because of the coexistence of
two propagating eigenchannels in the bilayer flake. For this
energy range, the behavior is more similar to that found for
the AA stacking, with an obvious difference on the spatial
periods. As already mentioned in Sec. III B 2, the lower har-
monic in the AB stacking is

�1L

2vF
, thus yielding a longer spatial

period �32 u.c.� that we attribute to the smaller coupling
between layers for this case.

B. AB-� stacking

Until this point, we have focused in the more symmetric
stackings, for which the continuum Dirac model and the

(b)

(a)

FIG. 6. �Color online� Transmission as a function of the energy
and flake length for the AA stacking, as obtained from the con-
tinuum Dirac model. Top panel: 1→2 configuration. Bottom panel:
1→1 configuration.

(b)

(a)

FIG. 7. �Color online� Transmission as a function of the energy
and flake length for the AB-� stacking, as obtained from the con-
tinuum Dirac model. Top panel: 1→2 configuration. Bottom panel:
1→1 configuration.
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tight-binding approximation have an excellent agreement, as
demonstrated. Now we turn our attention to the AB-� stack-
ing, which we can only model adequately with the tight-
binding Hamiltonian. This is because of the lack of symme-
try of the ribbon edges, as it can be seen in Fig. 2�d�. The
atoms at the upper edge of the top layer are not connected to
the atoms of the bottom layer, independently of the sublattice
they belong, and vice versa. Such a feature cannot be de-
scribed by the continuum Dirac Hamiltonian given by Eq.
�5�, which assumes that all carbon atoms in the A sublattice
of the bottom layer are connected to the B atoms on the top
layer. This difference is not important for very wide ribbons,
but it is noticeable for the narrow cases, for which the pro-
portion of atoms at the ribbon edges is non-negligible.

One way to assess the importance of the edge effect is to
check the energy difference between the first and the second
subband for E�0. For a AB-� nanoribbon is always �1,
whereas for AB-� nanoribbons it depends on the ribbon
width, as it can be seen in Figs. 2�c� and 2�d�. This brings in
a dependence on the ribbon width, as shown in Fig. 8, de-
picting the conductance for three energies and ribbon widths
N for the two configurations, 1→1 and 1→2. The conduc-
tance results demonstrate that size effects are still important
for N�30. At low energies �e.g., E=0.2�1�, for which there
is only one propagating channel in the bilayer flake, the three
widths show a similar behavior for sufficiently long flakes
�L�10�. However, for the highest energies the disagreement

is patent, due to the dependence of the longest spatial period
on N. The different periods are clearer for E=1.5�1, for
which at least half a wavelength of the oscillation can be
appreciated in the three cases. Notice that the case E
=0.5�1, shown in the central part of both panels in Fig. 8, is
also depicted for the AB-� stacking in Fig. 3. The striking
difference in the conductance for the two AB stackings is due
to the fact that in the AB-� case there is only one channel for
this energy, whereas in the AB-� there are already two.

V. SUMMARY

In this work, we have studied the conductance of a
graphene bilayer flake contacted by two monolayer nanorib-
bons. Two contact geometries have been considered: either
the left or right lead is contacted to the same layer of the
flake or to opposite layers. Furthermore, three different
stackings for the graphene flake have been taken into ac-
count, namely, AA, AB-�, and AB-�.

We have calculated the conductance with a tight-binding
approach and also by performing a mode-matching calcula-
tion within the continuum Dirac model, by choosing the ap-
propriate boundary conditions. We have explained the fea-
tures in the transmission and obtained analytical expressions
that allow us to elucidate the transport characteristics of
these structures. We have found several periodicities on the
conductance, related to the energy and the interlayer cou-
pling of the system.

In particular, for the AA configuration, we have found that
the conductance through the flake shows Fano antireso-
nances, that we have related to the interference of two dif-
ferent propagating channels in the structure. For a flake of
length L, the main transmission period is given by �vF /L.
For a fixed incident energy, the conductance as a function of
the system length L oscillates with two main periods related
to the energy E and the interlayer coupling �1.

For the AB stacking, we have found two distinct behav-
iors as a function of the incident energy E: for energies larger
than the interlayer hopping �1, the transmissions resemble
those found for the AA stacking. This is due to the existence
of two propagating channels at this energy range. There is,
however, a difference on the main period related to the inter-
layer hopping �1, which is twice the period found for the AA
stacking. This can be understood by noticing that in the AB
stacking only half of the atoms are connected between the
two graphene layers. For energies smaller than �1, the
AB-stacked flake only has one eigenchannel, and the conduc-
tance shows resonances related to the existence of Fabry-
Pérot-like states in the system.

The conductance of these bilayer flakes can oscillate be-
tween zero and the maximum conductance as a function of
length; thus, a system composed by two overlapping nanor-
ibbons can behave as an electromechanical switch. We pro-
pose that these characteristics can be employed to measure
the interlayer hopping in bilayer graphene. Our results con-
stitute a comprehensive view of transport through bilayer
graphene flakes, clarifying the role of stacking, contact ge-
ometries, flake width, and length in the conductance of these
structures.

FIG. 8. �Color online� Conductance as a function of the length
of bilayer region in AB-� stacking for three Fermi energies
�E=0.2�1, E=0.5�1, and E=1.5�1� for three ribbon widths: N=5
�dotted blue line�, N=17 �black solid line�, and N=29 �red dashed
line�. The E=0.5�1 and E=1.5�1 curves have been shifted up in one
and two conductance units, respectively, for the sake of clarity. Top
panel: 1→2 configuration. Bottom panel: 1→1 configuration.
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